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' THEORY OF INDUCED SPATIAL INCOHERENCE

1. INTRODUCTION

L]

N High gain laser fusion requires a highly symmetric pellet implosion. with ablation pressure
@ nonuniformities of no more than a few percent around the sphencal surface.' - For directly-driven pel-
lets. this symmetry must be achieved by the combination of nearly umiform laser illumination and
thermal diffusion in the ablating plasma.  * Thermal ditfusion alone is ineffective in reducing lower
spatial frequency nonuniformities to acceplable levels, especially at the short optical wavelengths
required for good laser-target coupling.*’

\ Theoretical studies have shown that acceptable sphencai illummmaton uniformaity can be achieved
1 by overlapping a limited number ( = 20) of focused beams, provided that each individual beam profile

is smooth and controllable."” Earlier efforts to obtain such profiles, however, have been frustrated
_ by the inherent imperfections in high-power multistage laser systems. The cumulative effect of
, numerous small amplitude and phase aberrations (both linear and nonlinear) introduced by each opti-
> cal element of a multistage laser produces large random aberrations in the output beam. and hence
large random intensity nonuniformities at the target surface. Efforts to control laser aberrauons,
using uitra high quality optics and extensive beam relaying, have not been completely successtul,
especially at high energies and shorter laser wavelengths.'?'' Nonlinear optical techniques, such as
phase conjugation'’ and Raman beam cleanup.'’~'* are effective at generating beams capabie of pro-
ducing nearly diffraction—limted focal spots. However, these techniques are not generally effective

)

! in eliminaung large residual intensity nonuniformities in the quasi near-field of the laser."* "'* where

' the pellet would have to be piaced in order to obtain the required spot size with a lens of reasonable
focal length.

:: One promusing solution to the uniformity problem is the Induced Spatal Incoherence (ISD con-
o cept.”’"*! In the conventional version'’ " of this techmque. a broadband laser beam (bandwidth
h A¥ >> /iy, is sliced into an array of small beamlets by an orthogonal pair of echelon structures.
. which impose a different time delay at each step. (The idea is illustrated in two dimensions in Fig.

1.) If the delay increments as = r, ., — ¢, are chosen somewhat longer than the optical coherence

" tume ¢ = 1/4v, the beamlets become mutually incoherent. These beamiets are then overlapped onto
" the target by a lens of focal length /. Each of them will independently focus to the same smoothly-
, varying far-field diffraction profile of total width 2f\/D,, provided that the imtial width D, 1s smail
. in comparison to the aberration scaielength s, in the incident laser beam. One has the option of

- either centering all of the profiles at a single point, or (by slightly tilting adjacent echelon steps in
opposite directions) centering them equally around four nearby quadrature points in order to control
the shape and width of the composite profile.'*~ (Fig. 2) If the incident beam aberration also con-
tains some short scalelength components (s, < < D). which might for example anse trom hard
apertures or damage spots, the resulting energy will tend to focus well outside the main iobe of the
far-field diffraction pattern. This component will therefore miss the target. and will be of little conse-
quence as long as it represents only a small fraction of the total energy.
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Although the overlapped beamlets produce a complicated interference pattern at any one instant.
their mutual incoherence ensures that this pattern will evoive randomly in times of order + [t the
target responds hydrodynamically. in tumes =ty >> .. 1t will etfecuvely ignore this rapidly-
shifting structure, and respond only to the smooth ume-averaged diffraction profile. For example. un
optical bandwidth A» = 30 cm™' (easily achieved in Nd glass or KrF lasers) provides 1 = | ps.
whereas time scales for gross hydrodynamic motion of a large high gain pellet shell are typically ~ 1
to 10 ns.

The idea of slicing the laser light into beamiets that are subsequently integrated at the target
plane also forms the basis of several other techmques for controlling irradiation profiles. In the
random-phase shift (RPS) technique developed by Kato and Mima. ' the beam shicing 1s pertormed
by a transparent phase mask.-* which randomly imposes a fixed phase shift ot either 0 or = on each of
the resulting beamlets. The RPS technique has the advantage that it does not require a broadband
laser, and the phase mask may. in some existing laser facilities, be casier to utilize than ISI echelons
However, the fixed phase relationship among the beamliets (even with broadband light) ensures that
the interference pattern will remain stationary throughout the pulse duration. The lower spatal tre-
quency components of this pattern could not only create nonuniformiues in the abiation pressure. but
could also seed self focusing or other instabilities in the underdense plasma.

Several optical integrating techniques have been developed to produce a "‘flat-topped’” intensity
profile at the target. This can be accomplished by an array of prisms.* tilted mirrors.”®<" or lens sys-
tems*® that combine the beamiets in their quasi-near fields. With these techniques one can avoid most
of the deleterious low spatial frequencies in the interference pattern if one also uses low F/number
optics (i.e., large angles between the beamlets). Alternatively, one can achieve full ISI operation by
using a broadband laser and allowing the usual delay increments between the tiited echelon steps. as
illustrated in Fig. 3. All of these quasi near-field schemes have the drawback that Fresnel diffraction
of the sharp-edged beamiets will introduce gross nonuniformities unless the Fresnel numbers are
>100. This requires very low F/number optics. which would be unsuitable for a reactor design.® In
principie, both Fresnel ripples and short scalelength intensity aberrations can be at least partially aver-
aged out by offsetting the beamlets from one another at the target.”®* However. it is not clear that this
averaging process could maintain adequate uniformity at the target if there were any significant
amount of aberration in the incident laser beam. The Fresnel number requirement would be less
severe if high power apodization were appilied to the edges of each step:. one possible technique for
achieving this is currently under development.-® Thus. the quasi near-field version of [SI may become
a viable alternative that would be partuicularly useful for flat foul acceleration experiments. The
remaining issues would then be the limited depth of focus [approximately the spot size x (F /number)].
and the cost and complexity of the apodized steps.

This paper presents a theoretical description of the conventional (far-fieid) version of ISI: **flat
topped’’ ISI will be the subject of a later paper. Section Il describes the ISI configuration in greater
detail, and caiculates the ideal profiles in the single-focus and quadrature modes described above.
Section [II examines nonuniformities in the average intensity and ablaton pressure due to residual
interference among the beamlets within finite averaging times. These results are generalized to a par-
tial ISI configuration, where beamlets at larger crossing angies are allowed to remain mutually
coherent throughout the puise. Because the resulting interference pattern will contain only high spa-
tial frequencies. which can presumably be smoothed out by thermal diffusion. partial I1SI may be one
possible way to accommodate a very large number of beamiets without significantly affecting the tem-
poral behavior of the pulse. Section IV examines the perturbing effects of laser aberration and beam-
let divergence on the ISI profile. Section V shows numerical simulations comparing ISI results (aver-
aged over iimes r = 100 r,) with those obtained by ordinary quas: near-field illumination and bv the
RPS techmique. In Sec. VI. we present some recent 2D numencal simulations indicating that ISI
operation suppresses filamentation in the underdense plasma. Finally. Sec. VII reviews these results,
along with those of recent target interaction expeniments using [SI. and briefly discusses a promising
new techmque for impiementing ISI without using echelons.
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! II. ISI CONFIGURATION

e Consider a collimated laser output beam propagating along the + :direction. Its instantaneous
wle field amplitude at point x = (c.y) within the transverse plane : = z; can be written in the form

» E  (xa) = bA(x) F(r) e ™", (2.
G . . .

L where the complex amplitudes A(x) and F(r) describe the transverse spaual structure (e.g.. due to
Y . beam aberration) and the temporal dependence. respectively, and b is a constant to be specified later.
Bl For a broadband Q-switched pulse. where J» >> I/t . F(t) is well approximated by a quasi-

stauonary stochastic variable. Its correlation function F(r + r) F*(r) will exhibit a smooth. localized
o ¢ -dependence

ot

ey - . -

i F(e +0)Fe(t) = \F)l= (1), (2.2a)
o

Radh where v0) = | and

' W) =0 for |r] >t = 1/ar, (2.2b)
j while the mean square amplitude |F (r)|° describes the slow temporal behavior of the average
; :I intensity over intervals ~t,,,. >> .. For any quantity G(¢) = G(F (1)), the brackets G(r) denote an
»’ ensemble average. which is equivalent to the time average
R B

{1 +7

oSy Gy, = f, Gt @
N

oy over interval r in the limit where r./7 - Oand r << 1. The effects due to averaging each
o - member of the ensemble over a finite number of coherence times will be considered in Sec. III.

‘..l'v

' An orthogenal pair of echelon structures, each having Ns >> | steps of width D, slices the

W beam into an Ny x N array of square beamlets. (If the incident beam is circular. then only xN¢/4 of
N those beamlets will contain any appreciable energy.) The nth beamlet. which is defined by the two-
! : dimensional vector n = (n,.n,) with n, and n. ranging over 1.2...N. is centered at position
1;. Xa = (X,.va). Where
ili ' ! i L ' I
) Xgn = Ln‘ - :(Ns + 1) D|. Vo = |1, = :(Ng‘ + D ; D|. (2.3)

.,’,'a L J

- and delayed by time ¢,. The total field amplitude can thus be written as the two-dimensional summa-

N tion

J' ’

- X = Xq (.V — Ya .

.- Eg(x,1) =bT u u Ft =) Axyexp [i kB, - (X — xy) — i wlt = 1)} (2.4a)
n".: n L Dl L DI
o

Y (% = x| Y = Ya

= bY u | 5 Ju 5 [Ag + (X = Xp) - (Y A),

o LI ! L !
s

> L

'.;::I X = X)X = X)) (VT A F(r -ty exp likBy (X = Xp) — twl + 1], (2.4b)
S

_ where k = 2x/\, utx) is a "top hat’" function equal to | for 1t < 1/2 but zero otherwise, v, = wr,
iy and 8, are. respectively. the phase shifts and deflection angles imposed upon the beamlets bv the
: echelon steps. and ( ), means that the enclosed quantity is to be evaluated at x,. The second order
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expansion (2.4b) assumes that A(x) varies slowly across each beamlet. with the transverse gradient
terms (V _A4), and (V. V _4), describing the incident beam aberration. For the unaberrated terms.
we can specify the normalization

K}

v, (2.5)
n

without any loss of generality. No attempt is made (nor should be made) to control the optical path
delays ct, to tolerances of order \, so the phase shifts ¢, are assumed to be mutually independent and
randomly distributed between O and 2x. The angular deflections 8, are allowed up to 2N indepen-
dent adjustments; however, the most useful combinations appear to be either 8, = 0 for all n (single-
focus configuration) or B, alternating among the values (8.3).(3.-3).(=8.3).(=3.-3) for the quadra-
ture configuration.

A single lens of focal length f now superimposes the beamlets at a target plane located a short
distance z(<<f) in front of the focal point. The complex amplitude at this plane is found by substi-
tuting expression (2.4b) into the diffraction integral:*

r bl
k s kX = xlT o kix T
Exzt) = —— \d-x’ X'.1) e - | 2.6¢
(x.2.1) 37 =) 5‘1 v’ Eg(X'.t) exp l_l 7 =) i 3 J (2.6a)
k b exp [ix(x.z.0)] L  kXq o x|
= F - 2) —
wf - BT {'d’“() N
D2 D2 1 1
x |, 4k L5,.48 A,,+(V&A),.'£+?(V*VLA)..:E.EJ
[ % ( . s kg’
X exp { —i X ==X~ (f =B | E+i = ——> (2.6b)
PUTE Y 3 T-7

where x (x.2.1) = k(f —=2) —wr + kix|°/2(f —2). and

O alz) B oy + kT X |P/2f (f = 2)

is a random phase factor. In writing expression (2.6), we have ignored the propagation distances /,
between the echelon steps and the focusing lens. This is justified as long as the target lies in the
quasi far-field of the beamlets; i.e., |z | must remain small in comparison to the beamlet focal depth:

lz| << 2Af*/D} 2.7

Expression (2.6) then takes advantage of the fact that the far-field amplitudes are independent of /,,
except for small phase curvature terms &l,|x|2/2f%%° The resulting phase differences
k(ly = 1a) 1x]2/72f2 between beamlets are negligible, so these terms can be removed from the summa-
tions and incorporated into x(x, z.r). Because |&| s D,/2"%, the |£|° term in the exponential of
(2.6b) can be ignored as long as condition (2.7) is satisfied. One then obt:ins

Db explix(x.2.1) kX, X i
Exzp) = ‘ p(ax IE F(t —ty)exp |[(d'q(2) — i u
n

f-
4
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K x {An [%W(Vm..- v,
R} y
A}
3‘ ,
\ —_ - X — (z2/ h - -3
. +—;— {«%{J (‘!LVJ_A).,:VLVL}sinC[W‘ ( f)‘“a Y ) B . 2.8)
o
* where
k)
¥ sin @, sin 6,
« . o X A 2.
sinc (0) = 7. 3, (2.9
s and
)
L] .
“ a = (f-2)NMD, = f\D, (2.10)
* are, respectively, the functional form and effective width of the far-field diffraction pattern due to a
, single unaberrated beamlet of width D,. The condition required for negligible separation of the beam-
o lets due to their angular divergence is [x,| |z| /fa << 1, or in terms of the F/number f /D of the
¥ total aperture D = NsD,,
Lh
Hy
" fI1D >>z/2a. (2.11)
The largest defocusing |z |m.« that would be required in a spherical illumination geometry would be
the pellet radius =a; hence, condition (2.11) can be adequately satisfied by using high F/number
o optics. Finally, we note that the far-field condition (2.7) can be rewritten as f /D, >> !z /2u. and
- hence follows immediately from (2.11) because D/D, = N5 > 1.
<
' Returning to Eq. (2.8), we expand the sinc function up to second order in x, :/f a. approximate
g f —z = f, and finally specify b = (8x/cD{)"/%:
»
RX 8x 172 : kxq ' X 1\
My E(xz.t) = | — explix(x. 2, )] ¥ F(r — t,) exp Lm’,.(:) —-i 1
3 ca- n f 1
Ny
R - _
W X {A“ + { L(V LA — ?_“A“:‘ SV, o+ % |~—(J,€)3(VLV‘A),, + (?): XnXped o
L‘ -
‘9
4
. . X - an
" —2:-;7=£x,(VLA),,:| :VLVL}smc [r—a—J 2.12)
4
.'? Expression (2.12) contains all of the information needed to generate not only the ideal ISI profiles.
- but also the deviations arising from multi-beamlet interference, aberration. and beamiet divergence
b effects.
\, To complete this section, we evaluate the ideal ISI profiles for the single-focus (i.e. complete
3 overlap) and quadrature configurations described previously. ISI generally requires all of the beam-
& lets to be mutually incoherent; i.e., the correlation function defined in (2.2) must satisfy
‘o
, Y(ta = ta) = Opqu 2.1
! ) In the scheme proposed here, this condition is achieved by choosing the incremental delays A:¢ to
. satisfy
s
NS
1 5

.
L}
a
)
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Ar > 1, = 1/4» (2.14)

for all n. [A factor As/r. = 1.5 will usually e sufficient to ensure that (2.13) is well satisfied if
Av = AWFWHM).] The ideal profiles are then found from expression (2.12) by applying (2.13) to the
ensemble-averaged intensity [ (x.z./)) = (c/8%)|E(x.z.0)|, and discarding the aberration and
beamiet divergence terms. For the complete overlap configuration (all 8, = 0) one obtains

1'%ty = (l7a%) Pyit) S(ax/a) (2.15)

where
Pot) = ¥ |F(t —tg)|* 1Aal” (2.16)
n

is the ensemble-average of the total power. and

. sin 8, sin @, :

S0 = sinc- (@) = ' 217
8. 0.

is the diffraction profile of a single beamlet. Approximately 82% of the incident energy is contained

in the central lobe of S(xx/a). as detined by —a < t.»v s a. The quadrature configuration

corresponds to £ - 8, = +3(—3) for even (odd) values of n, and y - 8, = +3 (—3) for even (odd)

values of n,. This gives

r
19xs) =y Pty S| xSl LY véa | (2.18)
a" ur L a d
where 6a = f 3 is the focal spot offset. u and » both assume the values =1, and the quantities
(e} (e} N s {e) o} . N
Pet(t)y =X 8 [Fu —tlP 14,13 Py-() =L % IF =t)l® | 4, etc. (2.19)

refer to summations over the even (¢) and odd (o) steps. The optimum value of éu 7« depends on the
specific target application. For the broadest possible flat-topped profile. as shown in Fig. 2b. the
optimum choice would be éa = 0.43a: to optimize the illumination uniformity and coupling in a
multi-beam spherical geometry.'8!? the best choice centers around éa = 0.22a.

In order to avoid significant temporal broadening effects due to the echelons. the towal ditferen-
tial delay should remain short in comparison to the puisewidth; i.e.,

Imax = fmn = N§ A1 << loypee. (2.20)

{The combination of this criterion and condition (2.14) thus places restrictions on the maximum
number of steps and the minimum optical bandwidth.] [If (2.20) is applicable, then |F(r -1y~
may be removed from the summations in (2.16) and (2.19), which are then subject to the normaliza-
tion condition (2.5); e.g., the total average power can be written as

Pyt): = |F)!*? (2.2D

In the quadrature configuration, the summations will satisfy the condition Py () + P; ()
+ Py (1), + Py (1) = Py thus, in the ideal case where these summations can be exactly bal-
anced, the profile becomes

I'Dx.t)y = (1/a%) Pty Q (xx/a.ba/a). (2.22
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:lf;:l where
o
[} |"
':"‘: - 1 | S p.éu v o= vhd
0.,:'. Qtn/u.oa/a)=I::S x T 225
:‘:f:. “ v d d
- The S(r x/a) and Qtxx/a .ba /a) profiles are compared in Fig. 2.
' III. NONUNIFORMITIES DUE TO RESIDUAL INTERFERENCE
T The target responds to quantities. such as intensity or ablanon pressure. averaged over some tin-
' ite number 7/r of coherence times. Unlike ensemble averages. these finite time averages will retamn
;‘t“ small nonuniformities due to residual interference among the beamiets. even 1If the beamlets are mutu-
) e ally incoherent. This section will examine those nonuniformuties in the limit where perturbations due
-q': to aberration and beamlet divergence are negligibie. For simplicity. we consider only the complete
'”' overlap configuration: the quadrature configuration will produce similar results for the cases of
RN interest where 8a < 0.4a. The amplitude E(x.r) can then be approximated by the zeroth order term in
Eq. (2.12), with 8, = 0. Thus, the time-averaged intensity profile can be written as the multimode
o expansion
-
"J" R
S lix.t), = (c/8m) E (x.):",
<
;,3 1 X )
= = S(@)Y Pu)  exptiKy - v, 3.h
,.:*, a a ‘m
-::'_-‘ where S (rx/a) is the ideal diffraction envelope defined in Eq. (2.17). and
",.\.:
2 ., ., {*r , ) dt . -
Pot) , = 3 Aq A%y . exp(ub,.-m,,,,,,)_‘ Fiu' ~t) F*t" — 1y m) —. (3.2a)
n ! T
y -
SN
j' ": Kn 2 &hXpom = X)/f =mkD,/f = 2x/a)m = makK 13.2by
A : . . : .
"'./ are. respectively, the complex amplitudes and spatial frequencies of the transverse modes. The m =0
) amplitude P,r), = F(r)i? . is the time average of the total power, so (3.2a) represents a straighttor-
2 ward generalization of (2.16). All of the m = 0 modes, which describe the interference pattern. are
oM statistically independent, except for the constraint P _,, (r). = P,) . required to ensure that / «x.7).
) is real.
" The actual target acceleration is determined by the average ablation pressure pix.) . . rather
than the intensity itself. In general, p(x./), can be related to the instantaneous intensity /ix.r) by a
v space-time convolution over the conduction zone between the ablation surface and absorptnon region.
o This relationship will depend upon the detailed hydrodynamic behavior within that zone. and upon the
T optical wavelength, average irradiance level, and other parameters that also affect the absorption in
Ny the underdense plasma.
' To a good approximation, one can ignore the temporal convolution and relate the time-averaged
:j; pressure p(x.t) , to a spatial convolution over the time-averaged intensity /(x.;) . in the liiit where -
o satisfies the condition
e
e
o Louise > Thyaro = T >3 0y . 3.
- where r, and 1, are. respectively. the ion-acoustic transit and thermal diffusion umes across the con-
o duction zone. These times are given by the approximate expressions ‘
o
L
C" 7
o
-
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where 4 15 the effecive width of the conduction zone, ¢, = 9.8 x 10° (Z/4)!"* [T.(eV)]'’? (with atomic
number 4 and charge state Z) is the ion-acoustic velocity in cm/sec, v, =4.2 x 107 [T.(eV)]'/? is the
electron thermal speed. 7., =34 x 10° [T.(eV)}*'*/n, In \ is the electron-ion collision time*' in sec. n,
1s the clectron number density. and InA s the Coulomb logarithm. For recent NRL planar-target
expenments using 527 am. 2 ns puises at intensities ~10" - 10" W/cm*. * we estimate
I.~500eV .4 ~50um. and n, ~ 107 ¢cm™ " these parameters then vield 7, ~320 psandr, ~ 360 ps.
Condition (3.3) 1s thus reasonably well-satustied as long as the gross hydrodynamic response of the
target occurs on nanosecond ume scales. A simular result 1s expected for reactor-sized targets operat-
ing at shorter optical wavelengths. longer pulsewidths., and higher intensities. For example. for a
possible high gain peilet driven by a few MJ. 14 um laser with a 5-10 ns pulse at §x 10" W cm”, we
esumate T, ~ 750¢V. 4 ~ 20 - S0wm. and n, ~ 4x 10~ cm™’; this gives 1, ~ 100-250 ps and
Im —~ 80—500 ps.

The spanial convoluuion over /ix.r). 1s approximated here by using the heuristic “‘cleudy day "™
model'~ to account for thermal smoothing effects within the conduction zone. If 5 (K.v . and
I (K.t , are the transverse spatal Founer transtorms of pix.r) . and [(x.r) .. respectively. then the
cloudy day model provides the simple result

piKn,=C I K.).expi— K d, (24

where C is a constant. Taking the Founer transform of £q. (3.1 and recalling defimtion 12 171, one
obtains

tad
tn

5’1K.l).=C':§tK—K_)I’-u),cxp—Kd). |
-

C/a*, and

]

where C’
SK) = fd°v s x Liexp =t K w0
u

- K., /aKyil — K AKw for K, and K. < AK
T Ofor K, or K. >aK

is a triangular function whose effective width AK = 2x/a = 4D ,/f 1s the intermode spacing. [See
Eq. (3.2b).]

We are primarily interested in focal spot diameters (~a) that are large in comparison to the
width of the conduction zone. specifically the case where

AKd = 2xrd/a < | (3.6)

Expression (3.5) is therefore well-approximated by
FKa),=C L SK =Ky Ppit),expi='Kyid).
m

which transforms back to

pixt)y, = C’ Sirx %): Putty expi— Knpidyexp i Ky, x). 3.7
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Comparing this result to expression (3.1). we see that thermal smoothing tends to filter out the higher
spatial frequency modes arising from the interference, but has little effect on the diftraction envelope
S(xx/a).

In the narrowband limit where r. exceeds the total time delay ., — fmn = V5 Az, the beamlets
would remain mutually coherent. This limit corresponds to the RPS technique.”** The amplitudes
P, (t)), retain large randomly-phased contributions for ail m #0, in addition to the m = 0 term
Pyt), = . |F (t)|°,; hence the average intensity profile (3.1) would consist of a stationary but ran-
dom multimode interference pattern modulated by the smooth S(xx/a) envelope. as illustrated in Fig.
1. Similar considerations apply to the ablation pressure profile (3.7), except that the higher spatial
frequency components of the interference pattern are suppressed by the exp (— | Ky |d) factors. This
filtering effect thus provides the primary basis for the RPS technique. In the following paragraphs,
we will derive approximate expressions for the RMS mode amplitude of the nonuniform time-
averaged intensity and ablation pressure. These expressions can be used to evaluate the standard
deviations of the interference nonuniformities for both the narrowband and broadband cases.

A. Complete ISI Operation

For complete ISI operation, A» must be broad enough to satisfy conditions (2.14) and (2.20).
thus ensuring mutual incoherence for all of the beamlets. The m # 0 components of J., (), will
then decrease in relation to .J,(r), as r. /7 decreases; i.e., expressions (3.1) and (3.7) will become
dominated by the S (xx/a) profile as the interference structure fades away. In the ensemble limit
where 1. /+ — 0, expressions (3.2a), (2.13), and (2.5) yield

Pm(‘)’r" Pm(”"r=6m.0‘ IF(I)|2":,.. (38)

and both (1 (x,2)), and .p (x.r), [as given by the approximation (3.7)] reduce to the exact S(xx/a) pro-
file. The double average in (3.8) allows an averaging over the slow nonrandom variation of Pou)
in cases where r could become a non-negligible fraction of «,,,.

The relative magnitude of the interference components of /(x.r), and p (x.r) , can be quanti-
fied by comparing the RMS mode amplitudes for m = 0 to that of the DC(m = 0) component.
Expressions (3.1) and (3.7) suggest the most appropriate definitions are (for m # 0)

o(m) = | Po(t), "2/ Pyu) ;'R (3.9a)
o,(m) = | Pu(t), |2 "2 exp (= [ Ky ld)/ Pyt)i'? = gyimiexpt~ |mi AKd) (3.9b)

where the / ; brackets again denote an ensemble average, and [recalling (3.2b)] AKX =k D,/f = 2x/a.
The total RMS nonuniformities due to all of the statistically independent m # 0 modes are then
evaluated from the vector sums

T - San
oy = [ ¥ oi(m) } . o = | ¥ o;m P (3.10a.b)
m a0 ' =

J L i

A subsequent paragraph will show that Py¢);'? = Py, thus, expressions (3.10a.b) may be
regarded to a good approximation as the standard deviations of the spatial nonuniformities.
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From expression (3.2). we obtain

| Putt) AT o= L A A% md® Ap . EXP i (@~ O pem ~ @y +0, -m)
. W

[ d ’ tery ‘ot
X S dt—s £ 'F("-ln)F‘“l—'n’m)P(t""n’)F(‘”-'n‘om) 3.1
4 T T

r

for all values of m, including m = 0. We now assume that the broadband light is sufficiently chaotic
to satisfy Gaussian statistics. thus allowing the factorization*’

F(' =t F*(1' =t F*("" =10 ) F U =ty o )
= F@U' -t F* (' —taem) F*U" =t) FU' —tg o)
+ FU' =t F*U" =) F*(t ~taem FU" =ty om) . (3.12)

Temporal mode locking behavior due to ‘‘instantaneous’” nonlinear effects, such as self-focusing or
harmonic conversion, will invariably have some effect on the statistics. However. the Gaussian
model is expected to remain a reasonable approximation as long as the number of temporal modes
Touse/tc (= Awtyn,,) remains large and the average nonlinear phase shift does not exceed 2r by a large
amount. Su:bstituting Eq. (3.12) into (3.11) and recalling expression (2.2a) and condition (2.20), one
obtains

i +7
4

TiPa@i = [T R TS (Fa

x EE AuA‘“""‘A‘l'A"*" exp [i (¢'l - ¢,n¢- ~ oy + Oy +ml
n .
X (Y(lavm =t Y*(uom = ta) + ¥ ~ 1" =ty + 1) Y@ =" ~lgiqm + g .-m)] (3.13)

Equation (3.13) gives for the m =0 term [recail the normalization (2.5)]

t~T ’ t-r I
Pot) =j’ d'T [F(thy)* j' d'T VAARIE

x [l +EZ | A'|: 'An‘|: ly@ =t =1, +'n')|: . (3.14)
" w

The second term within the square brackets is nonvanishing only when ' - ¢** - r, + r,. = 0; hence,
if condition (2.20) is satisfied, one can approximate |F(:')|* by |F(’')|* when evaluating the con-
tribution due to this term. In the limit where the total time delay N¢ Asr satisfies additional criterion
N¢ At < <7, condition ¢’ - "' -1, + t,, = 0 can be attained for all a and n’ over most of the
(t,t + 7) interval. The time integrals will then be approximately independent of n and n’. so the sum-
mations can be evaluated immediately with the aid of Eq. (2.5). Thus,

Poy? = |[F)l° }+ IFOI?, yiust /.

where ' | F(t)|* varies negligibly within times ~:, < <, and
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v is a constant. In the opposite limit where r < < Ng Ar, the second term of (3.14) becomes compar-
sy able to
“.(l"-
i/
B ':t‘

. IFOVF 2 1Aalt = [F 177 /Ng,
a

o which is again small as long as N¢ > > 1. Recalling expression (3.8), one thus obtains the expected
..‘- ) resuit

A4

R Poy; 2z |[FO|P 7= Pyn),* (3.16)
B

in all cases. The standard deviation in the case where r > Ng Ar is approximately

) , L2 .

J;:: gy = [Po([); - \»Po(l)),ﬁ':| /Po(f) r S YRMS (fg/T)“- <l/N5. (317)
0.~0 ¥

f;" assuming that r is sufficiently short in comparison 10 ¢y, that the slowly-varying quantity |F () |*
FN satisfies ¢ |F(¢) | /2 = |F(r)|?,. In contrast to Egs. (3.9) and (3.10), this quantity measures

temporal fluctuations of the entire profile amplitude, rather than spatial nonuniformities.

\°.; -

; A For m # 0, expression (2.13) eliminates the v(r,.n—f,) terms in Eq. (3.13), and the random
1,»" ; phase factors ¢’y — ¢'p . @ — ®'n + ¢'n +m ensure that only those contributions with n’ = n will add
'ftg"} coherently in the second set of terms. Equation (3.13) then reduces to the result

(R . M . 2. ; 2.2 2 { 2 2
‘_i' /‘l{\Pm(t))rl-":(.(|F(’)|.>.>r7§MSLE |An|-|Anvm|-- (318)
':- Substituting expressions (3.18) and (3.16) into (3.9) and (3.10), while again assuming ¢, <<7 << fpyise,
0N one obtains the general results for m = 0

)
K .; oy(m)/e; (m) = 0,/(.7, =0p (m)/&,,(m) = 0p /&p = YRMS (1(./1')”2. (319)
0

::' : where the factors

&

!ég

N 5 . s L] ) s “ 12

oty gm) = | ¥ A, |Agem ! . o= | ¥ &(m) (2.20a.b)
) n m=0

o

Lp(% ) 12

‘::. G, (m) = 5 (m)exp (- | m | AKd), 3, = { > &,f(m)} (3.21a,b;
oy m =0

RY

Fa describe the nonuniformities in the narrowband (RPS) limit. Expressions (3.19) and (3.21) show
; \;': explicitly that two independent mechanisms are combining to smooth the ablation pressure. The ther-
K :_':_' mal diffusion factors 3,(m) and 3, filter out the higher spatial frequencies, but have little effect on the
.}\;.f: longer wavelength modes unless A Kd ~ |. The temporal factor ypys(t. /1'% = (1./7'/3, which also
WY smooths the irradiation, reduces the relative magnitude of the nonuniformities as the number of
— independent random intensity contributions r/t. increases; it has the exact form that one would expect
;) ' from a random-walk process where the RMS nonuniformities increase as (r/¢.)!’*, while the average
-\";s fluence increases as 7/t..
. ;::’
s Useful approximations to (3.20) and (3.21) can be obtained using the normalization condition
o (2.5), provided that the laser output beam is not too badly aberrated (e.g., peak/valley spatial intensity
uad . variations < 2:1). In the case of a nominally flat-topped circular beam of diameter D =N; D,. one
22
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can aproximate |A, |’ by the average value 4/xN§ for |x,| s D/2, and zero elsewhere. For
Ns >>1, the n summation in (3.20a) is therefore well-approximated by (4/xN{)*S, where § is the
area of the overlap region between two circles of diameter N5 whose centers are separated by distance
|m| = 0; thus, one obtains

3 .- ’ , , ] w2
g (m) = (8'/2/xNs) [1/2 —sin™' (Im|/N,) = (| mj /Ng)(1 - Iml'/NSZ)”'} . (3.22)
which is plotted in Fig. 4.

The standard deviation of the integrated intensity can be found immediately by combining (3.19)
and (3.20a.b) and using the normalization (2.5):

=1 =% |AnH? =1 -4/ N)'? < 1 (3.23a)

o < Yrms (/D'? (3.23b)

Expression (3.23a) shows that without temporal averaging, the RMS amplitude of the irradiance
nonuniformities remains nearly independent of the number of steps N, and is comparable to the DC
term. By increasing Ng, one merely shifts the spectrum to higher spatial frequencies, without signifi-
cantly affecting the total energy in the interference pattern.

The standard deviation of the ablation pressure can be approximated by substituting expression
(3.22) into Egs. (3.21a,b) and (3.19); thus 0, = ygys (/D' &,, where the 2D summation

- 8 L3 . |
o, =13 — = sin
4 {Tstz ;;0 [2 |l

172
-\l - Iplz)”z] exp(-ZAKstlpi)} (= m/Ng < 1) (3.24)

is plotted vs AKdN; in Fig. 5. To illustrate these. results, we consider the parameters used for the ISI
simulations shown in Sec. V; i.e., A = 527 nm, f =6 m, Ng = 16 steps across the FWHM of the
beam, stepwidth D, =1 cm, and absorption-ablation distance 4 = S0 um. One then finds
AKd = (k D\/f)d =1 and AKdNs = 16, thus giving 3, = 6.6% from Fig. 5 and o, < 0.66% for
> 100¢,.

For short wavelengths and high gain targets, where condition (3.6) is well-satisfied (e.g.,
AKd = 2xd/a < 0.5), Fig. 5 shows that 5, depends essentially on the single variable AKdNs, and fol-
lows the simple approximation 3, < 2'/2/aKdNg. Thus, for a wide range of conditions applicable to
high gain laser fusion, the standard deviation of the ablation pressure can be approximated by

% < YrMms (. /7)'"? i =03, (3.25a)
3, < 2"2/AKdNs = a/2'? xdNs = (\/2'? xd) - (f /D) (3.25b)

where f/D = f/Ng D, is the overail F/number of the beam. As a numerical example. we choose
Ns = 60 steps/beam, a = 1.5 mm. d = 20 to 50 um, coherence time r. = | ps. and averaging time
r =1 ns. (The 1.5 mm would allow pellets up to 2 mm radius with quadrature illumination. and the
20 to S0 um is an appropriate range of absorption-ablation distances for 1/4 um light.) The standard
deviations for the narrowband and broadband cases are then 5, < 11 to 28% and 0, < 0.4 10 0.9%.
respectively, and the total F/number is f /Ng D, = a/Ng X = 100 for A = 0.25 um.




' We close this discussion with a caveat concerning the slow residual fluctuations in the ideal
ablation pressure

5 . Poxan, = C' Py(t), S(wx/a) (3.26)

due to the . Po(t)), fluctuations. According to the discussion leading to expression (3.17), the standard
deviation g, of Py(¢)), is the lesser of (r./7)!* or 1/Ns, and can therefore amount {0 several percent.
even for r ~ 1 nsec. This poses no problem as long as one uses only a single laser beam. I[n a muiti-
beam spherical illumination geometry,®~*-'Y however, it could lead to a small illumination imbalance,

3
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U unless all of the beams exhibit nearly the same random temporal behavior. One can avoid the prob-
lem by using a single master oscillator and balancing the net time delays within the different chains as
9 closely as possible (at least to within times << . r,). This will allow some interference to occur
i among beamlets arising from different beams; however, the large angles (typically > 20°) between
g these beams insure that the resulting-transverse wavelengths will be on the order of microns, and
g:, hence too short tc cause any problem.
¢
. B. Partial ISI Operation
B,
[ Complete ISI operation may be difficult to implement in a large aperture or highly aberrated
4 laser because the large number of incoherent beamlets that could be required would invalidate condi-
::4 tion (2.20). The number of beamlets is determined by the step width D, , which depends upon the
: target diameter < 2a = 2\f/D, and the amount of aberration in the laser. For A\ < 1/2 um, reason-
S able focal lengths ( e.g. f < 30 m), and high gain targets of a few mm diameter. one would typically
:' need D, < | cm. With a 100 cm aperture per beam this would require N¢ > 10* beamlets; it would
R significantly affect the temporal behavior of the puise, because for 1. ~1 ps. N¢ &r > N¢ 1. ~ 10 ns.
o
:'. One possible way to avoid this problem is a partial ISI scheme, in which the echelon step
sequence would be repeated after every N < N; steps across the aperture., (e.g.. see Fig. 12).
_ Expression (2.13) would then be replaced by the more general condition '
b,
‘; Y(ta = th) = ¥ San - vm- (3.27
" i
where (m,.m,) range over all positive and negative integers. including zero. Because the repeated
! steps (m * 0) remain coherent, they create stationary interference patterns at the target. However. if
N one chooses ¥V sufficiently large. these patterns will have only high spatial tfrequencies of magnitude
:. NAK.2'*NAK.2NaK. etc, and can therefore be smoothed out by thermal diffusion. The relative
_. magnitude of the interference components of p (x.r)), can again be calculated from (3.9) and (3.10),
& using expression (3.27) and arguments similar to those presented before. Thus, (3.19) and (3.21)
generalize to
0
t’ t 2
Y o, S {yﬁmi Y ogm + T OFGNm (3.28)
t Tmao m =0 J'

where the n summations again extend over all N¢ beamlets. The first term within the brackets
o~ describes the residual incoherent contributions, and is identical to expression (3.19) and (3.21b); the
j second describes the contribution of stationary interference patterns due to the repeating steps. If one
j chose N = | (corresponding to the random phase case) then the second term would be idenucal to the
thermal smoothing factor (3.21b), and would become dominant for . << r. If ¥V 1s chosen large

A enough to satisfy the condition 2¥AKd >> |, then the second term becomes negligible and (3.28)
) i reduces to the usual ISI result. Thus, for a large high gain pellet where condition (3.6) 1s well-
) satisfied, the standard deviation of the ablation pressure would still be described by (3 25a.br. The
W ISI configuration recently proposed for the Sirius-M test reactor design'® provides an instructive
' g po gn" p
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numerical example. Here, each 1.2 m aperture (square) beam was divided into a total of N5 = 240

.E steps. which repeat after every 60 steps. With a stepwidth D, = 5 mm, focal length f = 30 m. and
N wavelength A = 1/4 um, this givesa = f \/D, = |.5 mm. Assuming (as before) that 4 = 20 to 50
:: xm and r/t. = 1000, we calculate o, ~ 0.1 t0 0.25% trom (3.25a.b). The overall F/number of each
Rl 1.2 m beam is F/25.

IV. ABERRATION AND BEAMLET DIVERGENCE EFFECTS

PR

This section examines perturbations of the ideal target profile due to laser aberration and beam-
. let divergence. In order to separate out these effects, the analysis will be carried out in the ensemble-
Iq average limit r./r — 0, assuming complete ISI operation defined by conditions (2.14) and (2.20).
Because the resuiting expressions contain no interterence terms, and therefore involve only the long
scalelength functions such as S(wxx/a) and its first and second-order gradients. they shouid apply
equally well to the average intensity or the abiation pressure as long as condition (3.6) is satisfied.

b
o
;" A. Completely Overiapped Beamlets

The complete overlap configuration is obtained by setting all 8, - 0 in Eq. (2.12). Applying
conditions (2.13) and (2.21) to (2.12). and retaining only perturbation terms up to second order. one

; finds the average intensity /(x.2) = (c/87k ‘E(x.2)I" :

\J
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L)

where

L Bx) m (f/ik)(Y _A4) + (z/f)xd. +.2)
ﬁ (Recall that ( ), evaluates the enclosed quantity at point x,.] The slow temporal variation of
":.! lix.z.) and Pyr) (on a scale of 1) and the :-dependence of B,(:) have been suppressed here in

order to simplify the notation. Because A (x) varies slowly across the beamlet width D, the 2D sum-
mations over n can be approximated by integrals. For example the normalization (2.3) can be

.
x replaced by
N
li Y
’ PR 14
-‘ A-‘A" as \A(XH F = |, (43)
n !
~. and integration by parts can be used to eliminate the last pair of terms in (4.1); i.e.,
-
~ L d?
- TRe(A* Y _V _4), = 75—0“3‘ (A*9 VY _4 e
-'. L] = !
%]
4 dix
(3 =—j-D—.,.'v-AHV‘A‘)a-}:tV‘AuVAA‘)
'CN ! n
t@d .
s Equaton (4 1) therefore reduces to
N
. lix.zy =1 -Cun VA’-i-Cy:) v v ] ' 44
‘" -
',':- where /"x) = (P, u") Sixx,a1 is the ideal target protile defined in Sec. I, and
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..4'1
i} d*x d*x
C\z —<Re(A*B), C,x) = |\ —-BB* 4.5
t:: '“'SD,- : SD.,-
I:\ are the aberration coefficients. These coefficients can be rewritten in terms of the phase $(x) and
- modulus | A(x)| of the amplitude 4 (x); i.e.,
.;:;l‘ Ci) = Sd—i A P FO0 + < x], (4.6a)
zi. : Dy f
!
) :
'“r ) =) 2 < b
’ Ciyz) = S% |A(x)|'l[f0(x)+7-‘]2*'[{"74.1" A1, (4.6b)
!
g
'l:t':\ where 8(x) = (1/k)V | &(x) is the refraction angle acquired by the aberrated wavefront around point x,
E::? and the squared vectors [ ]* in (4.6b) represent diadic products [ ][ |. Expressions (4.6a.b) can
3:92 be interpreted physically as intensity—weighted averages of the bracketed quantities over the laser
ek aperture.
PO It is useful to relate C,(z) and Ci(z) to spatial moments®® of the coherent (but aberrated) focal
£y distribution /c(x.z) that the laser would produce without ISI. As shown in the appendix, expression
*‘:‘ (4.6a) is just the centroid of the coherent beam:
Y
X
g Ci@) = Ixc), = [ Ic(x.2))xd% /[ lc(x,2) d* 4.7)
; This result can be readily understood in terms of geometrical optics. A ray passing through point x in
33 the laser aperture will intercept the target plane at point xc(x) = f0(x) + xz/f; expression (4.6a) then
{{ averages all such contributions over the entire laser aperture. For the second moment {xcx.], which
“:, is a measure of the RMS width of i/c(x,z)), geometrical optics would average the diadic
_ [f8(x) + xz/f}* over the laser aperture, thus giving the first set of terms in (4.6b). A more thorough
" treatment including diffraction yields the complete expression (Appendix)
5
i:’:z: Cy2) = Ixexc) = § lotx.2) xxd®e/§ Ie(x.2ndc . (4.8)
¢
::'::: although the geometrical optics contribution will usuaily remain dominant in saturated lasers. where
. most of the aberration resides in the phase.
e‘l'
‘,::|'. The aberrated ISI profile (4.4) can now be expressed in terms of the coherent moments:
W,
L}
:7'«". d(x,2)) = [ —fxc],- V. + -;- XcXel: 0 9.9 1.1 4.9)
. By dividing out the maximum value /'”(0)), one can rewrite this in a dimensionless form suitable for
:: ' comparing the magnitudes of the perturbation terms; i.e.,
Cal
)
:‘: : I(x, 2)/d®0). = S(xx/a) — xixc},/a) S'(xx/a)
:'!a
JT' + %-rz(lxcxch/a:): S"(xx/a). 4.10
: - where
i “N
“
e Sia)m V S(a@). S =V V. S, EREN
‘
D)
n
g
4“‘:1'
. 15
x4

........ LIRS

L] L)
1) + . "A

v . Lwoa
» Yy Y ' (“ 'f‘.

A AN s
A,

‘- ‘n.\-



P

e
- -

Aol ¢

A
"0‘1 Ll

-

y -
~G

., A G B

2 2

XS

- -

i
3

@

ha

% Ml MR

ol e dhde el _hanii odeibeindiibe afbiies bl Sk Jui el S e b il . i

and Vv, = 3/3a. The functions Sia,.0). S' (a,.0), and $'' («,.0) are compared in Fig. 6. Equation
(4.9) can also be expressed in an alternative form by expanding /‘“(x) around point {xc}. and, as
usual, retaining terms only up to second order in the gradients; i.e.,

I 2y = (1 + Saxeaxele: 9,9 109 = (xcla).. 4.12)

where

taxcaxcl: = Ixcxcl: = IXcl: Ixc): . (4.13)

Because /“(x) is symmetric around x = 0, it is apparent that {xc} also defines the centroid (and
hence the alignment) of the ISI profile. A nonzero value of (xc}. would be of little consequence in a
flat foil experiment, where precise alignment is unnecessary. However, in a spherical geometry
where each laser beam must be properly centered onto the pellet, {x.}. should be treated as a pertur-
bation term [c.f. Eq. (4.10)] if it cannot be entirely removed by the alignment system.

If the aberrations are spatially random, one can use a simple statistical model* to estimate both
the magnitudes and reproducibility of the perturbation amplitudes in Eq. (4.10). This model should
provide a reasonable description of perturbations arising from small-scale effects such as turbulence.
multiple surface nonuniformities, and residual lens aberrations, which contribute the lion's share of
the far-field broadening and are the most difficult to eliminate. Systematic lens aberrations, such as
astigmatism in angularly—multiplexed KrF systems,*>-¢ can be largely compensated within the laser.
Large-scale effects. such as thermal gradients, tend to cause gradual beam steering effects rather than
any significant broadening, and can be balanced out in real-time by an automatic alignment system.
For simplicity, the model will treat only phase aberration, which is the primary culprit responsible for
both beam steering and broadening effects in real lasers. The random phase aberration is character-
ized by an effective coherence width s,, < D (where D is the laser aperture), over which the RMS
phase shift is ». The local refraction angle 6(x). = (1/k)V  ®(x) can then be characterized using a
number

Ni = (D/sy)r>1 (4.1
of statistically-independent contributions 8, whose ensemble-average values are 8, = 0 (assuming that
the laser is properly aligned) and whose RMS amplitudes are

Orvs = 10,177 = w/ksyy = N/2sq . (4.15)
From Eqgs. (4.6a,b) (4.7) and (4.8). one thus obtains for the relevant moments

b

Vi 2 Vo

- L
Ixcl = 3 E 'j . [XcXcl = 3 ZO,OI . (4.16a.b)
Na;, =1 Nab ;=\

where the subscript : has been dropped in order to simplify the notation.

Combining Eqs. (4.14)-(4.16a) and using the statistical conditions {8} =0 and
0,°0, = 0355, one obtains the ensemble-average {xc} = 0 and the RMS centroid
(IxcDaws = TIxcl1P'2 = fOaps /Ny = fA/2D 417N

1e.. the RMS misalignment due to small scale beam steering effects is approximately halt the
diffraction-limited far-field width f2/D. (This expression probably represents an upper bound on the
musalignment because at least some of the contributions to it may be correctable by an automatic
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;‘ alignment system.) The RMS value of the S'(xx/a) coefficient in Eq. (4.10) thus reduces to the sim-
ey ple result

,foﬂ’ R, = wxcDgus/a = (2/2f N/ Da (4.18a)
! = 1/2Ns. (4.18b)
<, : where Eq. (2.10) and the relationship Vs = D /D, was used to obtain (4.18b). [Note that the criterion
5‘ -?‘; specified in Sec. II requires Ng/N,, = s, /D,>>1 (e.g. = 3) to ensure the accuracy of the perturba-
Al tion expansion (4.10). For the two large-scale ISI examples discussed in Sec. [II, where we chose
e Ns = 60 and 240, the respective values of R, are 2.5% and 0.6%. It should be noted that expression
'0,;‘:‘ (4.18a) is also applicable to conventional illumination schemes.®~® where a would represent the diam-
e-‘Q:c-: eter of the quasi near-field protfile at the target. Obviously, aberration-induced beam steering is an
\:i' -'. issue that can affect all spherical illumination schemes. not just ISI.
B
%)
e The mean value of the second moment {xc-xc)) will reduce to its diagonal elements
g x@l' = (v&) = {Ixc|*1/2 as long as the aberration is spatially-random. Combining Egs. (4.14),
;:n::' (4.15) and (4.16b), one obtains for the mean square diameter of the (non-ISI) focal spot
\/
M)
“a hi A h 3 ki
it Hxe 1) = QfOs)® = (FN/s@) = (FNDPNS . (4.19a)
i
it which can be rewritten in the intuitively satistying form
l.‘ . 2 )
. Nay = 2t xc P02 /(D)
\."::'
o5y
i }: = (RMS diameter ) / ( diffraction - limited diameter ). (4.19b)
A
The effective magnitude of the S''(=x/a) coefficient in Eq. (4.10) is then
%
ol Ry = (r/8)4{ | xc | *)\/a?
Wwad
L%
GOl
% = (x*/8XN,,D,/D)* = (1° /8N /N§ . (4.20)
{ . which tends to broaden the ISI profile. as shown in Fig. 7. If the laser aberration NV, were only a
:,ll':, few times diffraction limit, one could virtually eliminate this broadening term without using an exces-
X sive number of steps: e.g., a choice of Ng/N,, > 10 would reduce R, to about 1% or less. However.
: the high power mulitistage lasers envisioned as fusion drivers are likely to be heavily aberrated. with
: o typical values N, ~ 10 to 20 for each 30 cm of aperture. It is therefore expected that Ng/N,, will lie
in the range of 3 to 5, giving the respective values R, = 15% to 5%. The function S''(xx/a) is
Ry~ smooth and symmetric (Fig. 6), so a perturbation amplitude of this size will be tolerabie as long as it
e remains reproducible to within ~ 10%. Because of the spatial averaging process inherent in expres-
' ‘,S'.\ sions (4.6a.b) one can expect a high degree of reproducibility.
e
=¥ The magnitude AR, of the non-reproducible part of the perturbation amplitude can be estimated
. from the RMS deviation l
LA ;
"" b 3.9 AT |
"ty Aflxc|®) = [l 317 = {xe P02 (4.21a)
]
DA A
".:." 3 V}D
= -L,[g("lo,l“— 19, 15972, (4.21b)
‘:::i‘ Nd-b ;=1 :
.‘
O..
l'.
N |
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where expression (4.21b) follows from (4.16b) and the statistical independence of the 8, contribu-
tions. Under chaotic conditions, one can approximate |8, |* — |8, > by iys, thereby obtaining
Af|Xc|?) = f0ius/Naw- The resulting contribution to the perturbation amplitude is then

AR, = (7°/8)4Al | x¢ | *1/a’

= R./Ny, = (1r:/8)Ndb/1Vg:. (4.22)

according to (4.14), (4.19a) and (4.20). For the simulations discussed in Sec. V (N, = 5 x diffrac-
tion limit and Vg = 16 steps across the FWHM of the beam) one expects AR, = 2.4%; however, AR,
will be much smaller under the conditions applicable to a fusion driver. For example. a 20 x
diffraction-limited beam in a 30 cm aperture with 60 steps would have AR, = 0.7%; a 1.2 m com-
pound aperture consisting of a 4 X 4 array of such beams (i.e.. ¥, = 80 and Ns = 240) would allow
only AR, = 0.17%.

B. Quadrature Configuration

The above perturbation treatment gives similar results for the effects of phase aberration and
beamlet divergence on the quadrature protile, at least for the cases of interest where the offset 6a
satisfies 6a < 0.4a. Unlike the complete overlap case, however, the quadrature profile /'¢'(x) may
be affected by laser intensity nonuniformities even if the usual perturbation terms in Eq. (4.10) were
negligible. To examine this effect in greater detail, we rewrite expression (2.18), assume condition

(2.20), and recall the normalization P;" + Py~ + Py~ + Py~ = Py
Py, PEr — ppv
190) = —2 Q(axsa, basa) + £ L o — T8
a- v ouly 8a-
6a 6a laa '50 B T
" [S [r"—“ i J 7 [,,-‘-u = (4.23)
a a a a J

where Q(xx/a.5a/a) is the ideal quadrature defined in Eq. (2.23). We now expand the S functions
up to second order around S(wx/a) (valid for small éa/a) and combine the P§’ . P§* summations
to finaily obtain

O

P
1'9x); = —— {Q(vrx/a.éa/a)
p

+ (xda/a) [C, S’ (xx/a) + C,S’, (xx/a)] + (wba /a)* C,, S"w(-;rx/a)} . (4.29)
where
(o) te) (o) (e} .
C. = L}:—: Lldal?.C, =T |E - | 144l (4.25a.b)
(o) (o) (e) te) (o) {e) (e) (0) N
Co = EE*EZ-EE-ﬁEJ lAn ", (4.25¢)

and the functions S'(xx/a), S''(xx/a) are defined in Eq. (4.11).
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;;\,:‘ One can nuil out most of the contribution to coefficients (4.25a-c) just by carefully aligning and
,t&.; orienting the echelons within the beam: however. in practical lasers, where the saturated near-tield
:.,' profile varies during the pulse duration (and may not even be completely reproducible from shot-to-
:,'.. shot), the residual contributions should probably be treated as random variables. Each of them would
e then have the approximate RMS value
o Cews = (NI [A s = (172" 2N5) (A1 A [ Dawis/ (14 s (4.26)
}:: where (|4 |9, = 1/N¢and (A|A4 |)rus respectively describe the average and RMS deviation of the
e/ intensity across the laser profile. For example, a ratio (A1 A | )gys/(14 |9, = 0.15 (corresponding
to = 2:1 peak/valley variation) would give Cgys = 0.1/Ns, which gives Cgpys = 0.7% for Ng =16
,: and 0.2% for N5 = 60.
-,; V. NUMERICAL SIMULATIONS OF ISI
e
-'f:':.‘ The beam smoothing behavior of ISI can be clearly illustrated by numerical simulations of the
time-averaged intensity and abiation pressure profiles for a planar target. These simulations were car-
:." ried out for 0.527 um light by a 3D numerical code (CHAOS), which evaluates the diffraction
! j integral (2.6a) for an incident laser beam of arbitrary aberration. but ignores refraction and filamenta-
o tion in the underdense plasma. Thermal smoothing effects are modelled by the heuristic '“cloudy
. day’’ approximation, as defined in expression (3.4), assuming in these examples an effective
e absorption-ablation distance of 4 = 50 um. For the simulations shown here, the chaotic temporal
e behavior of the laser light is modelled by Gaussian statistics. The real and imaginary parts of the
-"E- complex amplitude F(r) are assigned independent random values with a Gaussian probability distribu-
e tion, and these values fluctuate randomly from one coherence time to the next. Some of the simula-
oy tions were also carried out using other statistical distributions, such as random phase with constant
:' ' intensity; the results indicated that the ISI smoothing should be relatively insensitive to the statistics of
the incident light.
\‘I
?é: Figure 8 illustrates the problem encountered by the conventional illumination scheme.™*-!0-!!
> where the target is simply placed in the quasi near-field of the focusing lens. In order to model a
s saturated laser beam, the incident aberration was chosen to reside primarily in the phase: i.e.. the
e ~20 cm beam had a 5 x D.L. angular spectrum, but only ~30% peak/valley intensity nonuniformi-
, ties. This was accomplished by choosing the random complex amplitude A(x) to satisty Gaussian
¥ statistics, then attenuating the intensity nonuniformities by replacing the modulus [A(x)! by
-.j |A(x)|'/%. The overall laser profile was modelled by muitiplying the resulting values of A(x) by a
:‘. :J hypergaussian envelope fexp[—(2 |x|/D)"]}'/2. At the target, where the beam has focused down to
'\j 2 0.5 mm, the irradiance nonuniformities are significantly worse because of the phase aberration in
St the incident beam.'®!" Large random nonuniformities are also very evident in the ablation pressure
i:; profile, although thermal smoothing has removed the higher spatial frequency components.
i
:: Figure 9 models the original version of the RPS technique.”* A pair or reflecting echelons
~ (N5 = 20, D, = | cm) have been inserted into the beam with their alternating steps tiited to produce a
4 ' quadrature profile at the target plane, which is now located in the far field of a 6 meter lens. (This
configuration is similar to the one used in recent NRL experiments with broadband 0.527 um light.*
‘ In this case, however, the bandwidth Av is assumed to be sufficiently narrow that ail 400 beamilets
I{-,j remain mutually coherent, thus resulting in a complicated interference pattern that remains stationary
_ﬁ throughout the pulse. The thermal smoothing mechanism was unable to filter out the lower spatial
(:‘.:i frequency components in the corresponding ablation pressure. The maximum peak/valley deviation
W from the ensemble-averaged profile p(x); was found to be 37%. which is consistent with the RMS
‘ value §, = 6.6% calculated in Sec. III. Because the RPS technique allows a smaller stepwidth than
:::3 ISI, it would be possibie to reduce this nonuniformity by increasing the number of steps. [E.g.. see
f-j Eq. (3.25b).] However, it would also be necessary to either increase the laser aperture N¢D, or
‘-
fn
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decrease the focal length f in order to maintain the same spot size a. For example. a tenfold
decrease in g, would require Ny = 200, which would in tmn require F/3 optics.

Figures (10) and (11) show the time-average intensity and ablation pressure protfiles for the com-
plete [SI case, in which Av is now chosen large enough to ensure mutually-incoherent beamlets.
Although the averaging interval r = 100 ¢, was chosen relatively short in this simulation, the quality
of the target profiles already shows dramatic improvement over previous results. The residual low
amplitude structure on the average intensity protile has been all but completely eliminated from the
ablation pressure p(x) .. The maximum (peak/valley) deviation from the ideal {ensemble-averaged)
pressure p(x)' was found to be 2.4%, which is consistent with the RMS value 0, = 0.66% calculated
in Sec. III. On the basis of Eq. (3.25a), we expect the maximum deviation to be < 1% with averag-
ing times r > 300¢..

Figures 12 and 13 simulate the partial ISI case. where the time delay sequence now repeats after
the 10th step: thus steps 1 and 11, 2 and 12, etc remain coherent. The resulting increase in fine scale
interference structure (of wavelength \f /10D, =32 um) is clearly evident in the average intensity. and
would persist throughout the entire pulse. As a result of thermal smoothing, however. this structure
is effectively removed from the ablation pressure; e.g., the corresponding contribution to expression
(3.28) is proportional to exp ( —4xNd/a) = exp (=20). The 3.9% peak/valley deviation tfound here
is somewhat larger than in the previous case, but that difference appears to be statistical.

VI. FILAMENTATION SIMULATIONS

The filamentation instability is an important consideration in the use of ISI. Because the hydro-
dynamic response time for filamentation (typically ~ 100 ps) is much longer than the laser coherence
time (about 1 ps), it would appear that filamentation would be easily suppressed by ISI. In addition.
random density fluctuations driven by the constantly changing intensity structure would act to ditfuse
any residual intense spots, and spoil filamentation further.

On the other hand, the smoothing etfect of ISI is incomplete on the filamentation-hydrodynamic
time scales: time-averaged intensity fluctuations of ~ 10% persist over this period. and may still
drive filamentation. Also. there” will be short moments during which the local intensity incident on
target will be much higher than average. [For Gaussian statistics, the intensity distribution 1s
(17 1 Yexpt—=1/:1)-] Because filamentation is inherently a nonlinear optical instability. one may argue
that these momentary intensity peaks. rather than the time averaged fluctuations. dominate the fila-
mentation behavior. Thus the effect of ISI on light filamentation is not readily discernible from sim-
ple arguments.

A numerical code SELFOCT has been developed to simulate thermal and ponderomotive seif
focusing in laser-plasma interactions, and particularly any filamentation of the light inhomogeneities |
that may occur under ISI conditions. The code is time dependent and Cartesian in two spatial dimen- |
sions. Light propagation is handled by the parabolic wave equation. while the plasma dynamics are ;
calculated by semi-linearized fluid equations combined with flux-limited heat flow. |

e s

44-‘,
Py,
ela

Ly A. Code Description

N

.L:i Laser propagation in SELFOCT is described by the paraxial WKB approximation to Maxwell’s
F,'- wave equation

&'

- St a1an , .

. (c=V==03/9t) E = (1 - iv, /wwE . 6 1)
e This equation assumes a quasi-neutral plasma characterized by the local plasma frequency
o w, = wn,(x.2.1)/n.]""* and electron-ion collision frequency v, «n,ix.z.00/T 2ix.z.00." One can
:S separate the field variations into fast and siow space-time scales by writing
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E(x.z.t) = ¥(x.z.r)exp [ifk.)(:')d:' -twt). 6.2)
0

where ¥(x.z,r) is the slowly-varying complex amplitude. k, = ¢)/*(2)w/c. and €, = | —n,(z)/n. is
the real part of the dielectric constant determined by the unperturbed steady-state density n,,(:). In
the paraxial WKB approximation, ¥(r,:.r) and kyz) remain slowly-varying over spatial scales
A~2x/ky(z). Substituting (6.2) into (6.1) and retaining only the first order variations of ¥(x.:.7) in :
and r, one obtains

; ~ N ok >
(gikojiJ,._li‘ i ”*L:"{'
LT 9T v ar 9 axt |
=L (¢, —¢, +i€,)¥. (6.3)
o
Here. €,ix.z.¢t) = 1=n(x.z.ty/n. and €(x.z2.1) = v, (x.Z.0)n(x.2.1)/n w are, respectively, the

real and imaginary parts of the instantaneous plasma dielectric constant, and v,(z) = c€,/7(2) is the
group velocity. This equation can be simplified by applying the additional transformation

12 o

—ko(O) W c En(2)
¥ = - . (6.4)
v tko(:) ] e*P \‘ c g 2¢)7 2 J

where €,(z) =v,(2)n.,(z)/n.w, and rewriting all quantities in terms of the time r =1 ~z/v,(2).
Redefining the axial coordinate as dn = dz/€)*(z) and normalizing both spatial coordinates to the opt-
ical wavelength A = 2xc/w, one finally arrives at the parabolic equation in canonical form

‘-
e
d

)

»
\
'

-

h - b r - -
(Axid/3n + F/0x)Y(x.2.0) = —d4x° Le(x.z.r)—eo(z)l vlx,z.10). (6.5)

where € = €, +i¢, is the complex dielectric constant.

Equation (6.5) is solved using a split-step fast Fourier transform (FFT) technique.” To accom-
modate the FFT technique. the computational mesh must be periodic in r. and this atfects the manner
in which the incident (z = 0) ISI laser field is numerically constructed. The [SI echelons separate the
broadband laser beam into a multitude of mutually-incoherent beamlets. which are then overlapped at
the target by the focusing lens. In the SELFOCT code. these overlapping beamiets are approximated
by incoherent plane waves propagating at slightly different angles 6, = x,/f, where x, is given by
expression (2.3) and |4, | < <1. The incident optical field is constructed on a calculational mesh in
Fourier k-space, with each plane wave assigned a transverse spatial frequency

= ko(0) tan 8, = ko(0)9,, where ky(0) = w/c. Modes are exactly resolvable when |%,, | X,, is an
integer muitiple of 2», where X,, is the transverse width of the mesh; modes that lie between the
points on this k-space mesh are assigned to the nearest mesh point. Any modes outside of the resolv-
able frequency range (i.e.. |k, | Xix <) are assigned to the k, = 0 (DC) mode. The compiex ampli-
tude of each beamlet is assumed to satisfy Gaussian statistics, as in Sec. V, with independent random
fluctuations from one coherence time to the next.

The plasma response to the laser field is found by solving linearized fluid equations that include
the ponderomotive force term. Combining the continuity and momentum equations for the fluid
plasma, linearizing in the flow velocity, and ignoring the second-order term Vin(n )V ¢° one obtans
a driven ion-acoustic wave equation for the quantity L(x.z.r) = In(n,):

e A ion ' Vet
— + v, — ¢V L = Ve s +aV- V¥ (6.6)
_at" at )
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where o = Ze“/dm,m, w3, ¢; = (ZT, + T,)/m;, and v, is a heuristic damping rate. Linearization is jus-
tified by the fact that the fractional density and electron temperature perturbations were found to be
typically < 10%, especially in the ISI runs where rapid fluctuations of the interference structure
tended to suppress large perturbations. In any case. most of the non-ISI simulations were carried out
using a steady-state treatment, which does not require linearization. [The use of the variable inin,)
instead of n,, preserves the correct ponderomotive nonlinear steady state behavior.] The ion tempera-
ture is assumed to be constant; ion-clectron energy equilibration times are typically on the order of
nanoseconds in these plasmas.

The ion-acoustic propagation and heat flow are expected to occur primarily in the transverse (x)
direction. This stems tfrom the following two considerations: (i) under the paraxial wave conditions
assumed here the intensity variations occur primarily along x. and (ii) because the optical propagation
speed (~ ¢) is so much larger than c,, the ion-acoustic “*wake'" will propagate nearly normal to the
optical axis :. Assuming then that all density disturbances propagate only along . with relatively
small variations in the sound speed. one can Fourier-transform Eq. (6.6) to yield:

[ 3 . al; K20 o
Ty t gk kT Lk V= - — al¥l T+ (6.7
\al}- at | (o) S -
where ' = tc/\. k' = k X\ and ¢ = v, /k.c, is the ratio of the imaginary/real frequency of the ion-
acoustic wave. (In this paper ¢ is taken to be 1,2). The first term on the RHS of (6.7) is due to the
ponderomotive force, and the second term is the plasma pressure due to thermal gradients. These
source terms are assumed to be approximately constant over the time step used in the code (typically
a picosecond or so). The solution to (6.7) for a source constant trom ry’' t0 4" + 1, is:
Lk’ ty +t,) =exp(—gk't,'/2) % 1/x[OL (k' .14')/3ty + —qk Lk'.ty)+ l qk G sin («t ()

~

r - h
+ LL(k’.to') +G : cos (k1)) -G (6.8)
- J
where x m (1 -¢>/$)' k" and G = ta: Wik .ty =0,/ =tk oy’ =1, /D/c;,.  This result is

inverse Fourier-transtormed to yield the plasma density n,(x.z.ry = ;") at the next time step.

The electron temperature is found by solving the relevant energy balance equation.

30,
3n—a—T=—&4—H. 6.9)

at dx
where Q, is the electron thermal heat flux, A is the joule heating source given by # = «, | ¥1°, and
x»(n,.T,) is the inverse bremmstrahlung absorption coefficient. Compression effects and electron-ion
energy coupling are much smaller than the terms included in (6.9). and are ignored. A conservative
flux-limited formalism is used for the heat flux: i.e..

" kdTax! AT,

(L xdTsarl T T
v XA ™

where «, is the electron thermal conductivity of the plasma and f, is the flux limiter, which is set to
0.1 here in order to ensure that Q, does not exceed its classical limit. (For the simulations presented
here, the temperature gradients are small enough that the heat flux remains well below the classical
limit; thus the magnitude of f, has little effect on the results.) Equation (6.9) is solved by a
predictor-corrector method with periodic boundary conditions. This can cause problems. because the
net energy deposited by inverse bremmstrahiung cannot be lost to the plasma by either transverse heat
flow losses or conversion to axial plasma kinetic energy. Therefore, the average energy gain
Hz.t) = de Hix.z. t)/X,, 1s subtracted from the source term of (6.9) in order to keep the mean
temperature at a given axial distance constant.

(6.10
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“:‘:;':" For steady-state problems. the calculation of the plasma density is simplified. The momentum

::':n. equation for constant sources ¥ - and T, reduces to Vic n,) +n,a¥V ¥'° = 0. vielding the solution

c:;'

'_-0:‘1' . ) A )

A n(.r.:)=#expv—a§ u,/—axdx' . 6.11)
oy eox.2) i oL D) i

EXOA %

‘s ;-: where C' is a constant. The temperature 7. is found by iteratuve solution ot Eq. (6.9) with arbitrary

4 3y time steps, performed until the solution converges upon iself. These separate solutions for 7, (x.:)
g and n,(x.7) are iterated alternately to obtain a convergent steady-state solution.

:;:i y B. Results

AL

oY -: The results presented here compare the filamentation behavior exhibited by ISI irradiation. con-

:ﬁl & ventional (quasi near field) focusing. * and the RPS technique. -’ For comparison purposes. we start

e with a simple well-defined laser-plasma model. First, the plasma is chosen to be homogeneous: the
e constant coupling parameters throughout the interaction region simpiifies the analysis. Second. we
:: ne ignore absorption in the plasma: absorption competes with filamentation. and can mask or eradicate

~,., . the effect. While absorption is important in realistic conditions. it unnecessarily complicates the

',;.ik { interpretation and com?arison of the results. Both of these contraints are discarded later when we

‘_:?:,L look at a ‘‘real plasma’’.

=

o N The plasma model is composed of a homogeneous 250 um thick CH slab at n., = 0.5n, and
_J}: T., = 500eV, irradiated by a .25 um wavelength laser at 2 x 10" W/cm*. Under these conditions.
\'f"f perturbation theory®® predicts that both the thermal and ponderomotive seif-focusing lengths (for the
C’j_-,": fastest growing modes) are comparable (about 350\). Thus, the interplay between these two mechan-
3

isms shouid be well represented here. Note that this plasma model is selected primarily to produce a
very strong filamentation interaction; while useful for the purpose of comparison, it gives results that

! are more pessimistic than those of actual laboratory plasmas. as we will see later.

b

SN0

,”{‘:;-‘( Three different cases are investigated: ISI irradiance. RPS irradiance. and the standard quas:
’\"f-') near-field irradiance. Of these three, only the last is ambiguous in nature. We want the standard

e irradiance case to represent a typical high-power laser. In practice. the structure ot quasi near-tield

. 3 . illumination can vary greatly. depending upon the laser type. the power level, the optical engineering.

i.{c"' the attention paid to beam quality, etc. Here. we select a 3:1 peak-to-average as charactenzing the

.o" typical laser. The transverse mode spectrum of the incident plane waves is chosen to be tlat tor all

,' spatial frequencies between x/R,,, and NsaK = k/2(F/number).

&4t

A Two of these cases under scrutiny, the RPS and the standard laser case. require only the steady

o state analysis because the intensity patterns remain stationary in time. First consider the standard
8

. case, where the peak to average intensity value is 3:1 (the standard deviation is 3, = .51). Figure 14
shows the intensity profile as a function of the propagation distance into the plasma. The first focal
point appears at z = 200\, and additional focal points appear with increasing frequency as the beam
Tyl propagates farther into the plasma. This focal distance is shorter than the predictions using either the i
ponderomotive or thermal mechanisms alone; it is evidence that both mechanisms are acting together

,:7 y to promote filamentation. The filaments that are created appear to attract one another. and converge
) 0:3' into a single large scale mode that has a high spatial frequency sub-structure. This behavior is caused
%:k by the interaction of the thermal and ponderomotive forces: the ponderomotive force is primarily
2'255:5 responsible for the small initial filaments, since its fastest growing mode is approximately 40\ in
GO width. Because thermal conduction spreads out temperature variations, the thermal tilamentation
o mechanism only acts over larger distances. The fastest growing resolvable thermal mode 1s the same
Retns size as the simulation dimension. and this appears to be responsible for the large scale final mode.
! j"‘f_ Note that the transverse spatial frequency structure of the irradiance changes fundamentally as the tila-
:z‘ 135 ments are formed: after the first few filaments form, the structure is spread out over a much larger
e
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. region in frequency space. At first. these higher spaual frequency structures are locally coherent and
form coherent filaments. Once these filaments interact with one another. however. the ntensity pat-
tern is randomized as the high frequency structure becomes incoherent on a much smaller scale. The
resuiting interference pattern seen in the tinal large scale mode then closely resembles the imtial
structure in the RPS method. Thus. once sigmficant filamentation occurs and the modes interact
tbecause of thermai self-focusing). further filamentation should be suppressed in accordance with RPS
theory.~

In the RPS calculations. there 1s 4 moderate amount of suppression of tilamentation .1 one uses
smail F number «<F 10y optics. Fig. 13 illustrates the reduction ot filamentaton that occurs as the
F number decreases. As a measure of the degree of tilamentation, the largest :ntensity occurring in
the plasma is used. [Typical maximum,average values ot the intensity profile ncidens on the plasma
are as follows: (i) for the standard case /., /,,). .,= 3.t tor RPS / , [, ., T 410 6. run tor
ISI Joanidsw :a0= 40 S and /o, 1 1..y= 1| For Fnumber >F |U. the maximum intensities
are, on average. about 25% or more larger than tor F number <F# 10 There mav be hetter suppres:
sion below f/2.5, but the parabolic wave approximauton begins to break dJown there. and the simula-
tion results are not trustworthy. Also. the trend may be more pronounced at higher F number than
shown here. The runs with larger F number do not include the longer wavelength modes. which are
lumped into the DC term. and thus the peak inual intensiues are somewhat lower than might ther-
wise be expected.

The [SI simulation was run for 350 coherence times it = 97 psec). and most ot the resuits
presented here were averaged over this entire intervai  The most important result s the nme aver-
aged intensity distribution shown in Fig. 16. This distnbution exhibits the same devejopment ot hugh
spaual frequency structure found n the standard laser case. but without the deveiopment ot the atten-
dant intensity peaks. The suppression of these peaks appears to be prnmaniy due to the tact that the
ISI wradiance structure constantly shifts around. not allowing any single filamentary structure 10 per-
sist 1n the same spot.

However. the suppression is not compiete on the shorter ime scales. A tvpical instantaneous
intensity distribution (Fig. 17) shows that filamentary structures are sull present. aithough it 4 more
modest level than in the standard case. To compare. Fig. 13 plots the values of 7, /. \s propaga-
uon distance for the standard case. along with the maximum value of the time-averaged [SI intenviny
t I may). and the ume average ot the maximum ISi intensity « /. The IS case 1s simular 10 the con-
trof case. except for two sigmficant differences. First. the butldup of the ntensity maximium takes
much longer with ISI (with the first intensity maximum occurring around : = S00A. 4s uppused (U
: = 200\ in the standard case). meaning that [SI has lengthened the selt-focusing distance.  Second.
the peak intensity with ISI 1s a factor of two lower than that tound without [SI. This mav be due t©
the smoothing effect 1n the time average. or it may be due to the smailer density channeis made in the
ISI process. (Note that aithough the averaged peak intensity 1n IS] is smaller than the standard case.
the imtial averaged peak intensity 1s larger.)

While [SI effectively suppresses filamentation of the ume-averaged intensity. the behavior of the
instantaneous intensity distnibution tn the plasma is sull cause for concern, as many plasma instabiis-
ties have very short growth times (~ psi, and can therefore react to the peaks seen here For-
tunately, laser fusion pellets wiil not have densities ~ 0.5 n. or sub-kilovolt temperatures cxtending
over hundreds of laser wavelengths. As an exampie of a more realistic piasma. we present a4 simula-
tion taken from a short-wavelength pellet interaction used n an earlier study ¥ The target s 4 DT
pellet dniven by a multi-megajoule laser. 26 nsec into the pulse. after a significant portion of plasma
volume has been created. The temperature and density profiles used for this example are piotted n
Fig. 19 To a good approximation the radial convergence can be ignored. and the target treated ds
planar. The major differences between this and the previous model are the inclusion ot absorption
(approximately 50% of the light 1s absorbed before n = Sn ). higher temperatures. and the large
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volume of plasma that is very underdense (and therefore more weakly coupled to the light). The
results. as plotted in Fig. 20. show that ISI suppresses tilamentation even on the short time scales.,
and negates filamentation as a problem. On the other hand. the resuits with the standard irradiation
condition (2.25:1 peak to average) indicate that filamentation will be a nuisance without ISI (Fig. 21):
here. a filament with a maximum intensity 9 times the incident average intensity has been formed.

VII. SUMMARY AND DISCUSSION

This paper has described the ISI technmique in detail. and explored its potenual application to
direct-drive laser tusion. We have derived the ideal ISI profiles in the compiete overlap and quadra-
ture contigurations [Egs. (2.17) and (2.23), respectively], and examined the perturbing factors. such
as multibeam interference. laser aberraton. and plasma tilamentation. which can introduce nonunifor-
muties or limt the controllability of those profiles.

Using both analytic theory and numencal simulatons. we have shown that ablauon pressure
nonuniformities due to the rapidly fluctuaung interterence structure are smoothed by two independent
mechamisms. Thermal diffusion suppresses the higher spanal frequency components. in accordance
with the “"cloudy day'™ model. [E.g. see Egs. (3.7) or (3.21a.by.| [f this mechamsm acted alone ras
it would in the case of narrow bandwidth light) the standard deviation 3, would be approximately pro-
poruonal to \\.Jhif D) [Expression (3.25b)], which tavors a large conduction zone width « and
small overall F number f D  Temporal averaging provides an additional smoothing tactor
a ~1t..n' " [EQ. (3.19)], which favors a wide laser bandwidth Av = |/r. and a long puise. The
standard deviation o0, = 3,0, resulting from the combination of these two mechamisms s given
approximately by expressions (3.25a.b); this resuit shows that ablation pressure nonuniformities -~
1 % should be attainable under laser-plasma conditions of interest 1o ICF. In the paruaj ISI scheme.
there is a stauonary component in the interference structure due to the coherent repeating steps.
Although this component cannot be smoothed by temporal averaging, its spatial frequencies are suffi-
ciently high that they are almost completely eliminated from the ablation pressure by the thermal
smoothing mechamism. Thus. paral ISI may be one way to avoid the excessive puise lengthening
effects that would otherwise occur in large aperture systems where the number V¢ of independent
beamiets could exceed . A If necessary. one could avoid the coherence between repeating steps
by segmenting or multipiexing the laser beam tselt. dnving each segment by either separate oscilla-
tors or 4 different switched-out portion of a long single oscillator pulse.

The theory has shown that with ISI the average intensity profile at the target remains relatvely
insensilive o laser beam aberrations whose scale lengths v, are larger than the imnal beamlet width
D  In practice. this means that an incident beam aberrated to vV, umes its diffraction limit would
require V; = 3V, echelon steps o ensure adequate control over the target profile. The aberration
will tend to musalign and broaden this profile somewhat [Eqgs. (4 10) or (4.12)}, but it will not intro-
duce any small-scale structure [n the usual case where v, > > [ and the aberration anses primaniv
from random phase structure on the beam. the relative intensity perturbations due to misalignment and
broadening are R, ~ 1/V; [Eq. (4 18)| and R, ~ V5. N¢ [Eq. (4.20)], respectively Most of the
broadening effect 1s controilable because it depends only upon spatial averages of the phase structure
over the entire laser aperture. the uncontrollable component 1s AR. -~ V. V¢ [Eq. 4.22)]. Laser
intensity nonumformities can also contribute to perturbations of the ISI profile. especially in the qua-
drature configuration. however this effect aiso depends upon a spatial average over the aperture. and
1s expected to be negligible if V¢ > > 1. Our resuits show that it should be possible to control the ISI
intensity perturbations to within ~ | %. even with the degree of aberration expected in realistic tusion
dnvers.

Two dimensional simulatons of optical propagation using the SELFOCT code have shown that
ISI sigmficantly reduces tilamentation n the underdense plasma. even in a non-absorbing. high den-
sity (0.5 n.). low temperature (500 eV) slab. where a normal laser beam would experience intense
filamentation. For low F number opucs. the filamentation aiso appears to be inhibited bv the
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random-phase shift technique, > but to a lesser degree than with ISI. In simulations at 0.25 um.
including inverse bremsstrahlung, higher temperatures. and a more realistic plasma profile, the fila-
mentation is virtually eliminated with ISI. (Fig. 20)

Te o ne a ma

An important concern for ISI is the question of how broad bandwidths or transient nonuniformi-
" ties would affect certain laser-plasma instabilities (e.g. parametric instabilities), which can respond
X much faster than the hydrodynamics. Earlier experiments at 1.054 um indicated that although broad
laser bandwidth suppressed stuimulated Brillouin scattering in the underdense plasma. as predicted
theoreucally, the bandwidth appeared to enhance a critical region instability that produces fast elec-
trons.”®* In the NRL experiments at | micron.® this effect was observed both with and without the
ISI echelons. The bandwidths used in these experiments were comparable to the expected ion-
acousuc frequency for the parametric decay instability, and the associated temporal mode beating may
have been seeding this critical region instability. More recently,® the experiments were repeated at
' 0.527 um to determine whether the use of a shorter laser wavelength, which is strongly absorbed
b before it reaches the cnitical region. would inhibit the fast electron generation. This indeed occurred:
in fact. the experiments showed that with the combination of ISI and shorter wavelength. the
enhanced hot electron generation observed carlier was replaced by a virtual quenching of hot electron
o production. In summary. the NRL experiments are consistent with the following model: (1) The
' smooth irradiance protile obtained with ISI echelons and broad bandwidth suppresses the effects of
hot spots. preventing for example the seeding of self focusing. (2) The combination of this smoothing
with the stabilizing effect of the bandwidth itself suppresses underdense parametric instabilities. (3)
’ The shorter laser wavelength prevents light from reaching the critical region. and thereby suppresses
‘ broadband enhancement of hot electrons.

In the ISI and other related schemes discussed so far, the beam is divided up by optical arrays

placed at the output of the laser. where coating damage and optical complexity'®*¢ may be possible

¥ issues. This restriction on the location of the ISI arrays stems from self focusing effects in glass
lasers. and from the necessity of maintaining spatial coherence in any harmonic conversion crystals.
Near-field nonuniformities associated with an array of beamlets would seed self focusing if one
attempted to amplify those beamiets in a multistage glass laser.*' In KrF lasers. this restriction is no
longer necessary because the amplifying medium is gaseous. intensities are low (typically < 10
MW/cm®). and harmonic conversion is not required. The spatial incoherence could then be induced by
echelons*? or some alternative technique at a low energy stage within the laser. and optically-relayed
through the remaiming stages of the amplifier chain. For example. one could use retlection tfrom a
R so-called plasma “*spatial filter’’ to generate the spatially-incoherent light.*> Although this technique is
capable of producing a smooth focal spot, **** it is not clear whether there would be sufficient controi

o over the spaual coherence properties. or sufficiently rapid temporal averaging of the interference
kS structure to ensure that the target profile is controllable. Alternatively, one could use the scheme
shown in Fig. 22, in which a beam of statistically-homogeneous incoherent light is generated by

X broadband amplified spontaneous emission (ASE) in 2 mirrorless or spatially multimode oscillator.*'
o This beam traverses a variable-density absorber, whose spatial transmission function F(x) is the
desired target beam profile. It is then focused onto the entrance pupil of an opticaily-relayed KrF
laser chain. Because the entrance pupil lies at the Fourier transform plane of the absorber, the optical
' information needed to reproduce F(x) at the target will be transported through the laser by a multitude
of small coherence zones, rather than any large whole beam structure; thus the coherence zones play
essentially the same role as the beamlets do in the conventional ISI. The target beam profile will be
insensitive to laser imperfections as long as the coherence zones remain small in comparison to the
transverse scale lengths of the phase aberration or amplifier gain nonuniformities. [t will be insensi-
tive to amplifier saturation if the coherence time . remains short in comparison to the KrF relaxation
time (>1ns). Theoretical analysis, along with a preliminary experimental test using a smail KrF
W oscillator-amplifier setup, has demonstrated that this technique is indeed capable of producing a
: smooth, controllable focal profile. even under non-optmum conditions.>' Additional results on a
N larger KrF system will be reported in later publications.
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AL APPENDIX
A\.
fh This Appendix calculates the moments of the target profile that the laser would produce without
. the ISI echelons. The coherent (but aberrated) amplitude in this plane is given by the diffraction
RN integral®®
S
\ : -
A k X' -x - kK ox -
o Ec(x.z.t) = ————— Vd ¢ Ef(x'.1) - (Al)
"’. c(x.2.1) Y __)5 X E (X' 1) exp ‘Ll 3 - t 3 ‘
o Substituting expression (2.1) for £, (x’.r), one obtains the intensity
1 .
v Ic(x.2) = (c/8%) | Ecix.2.0)1"
s
‘i'::l

F AR - ~

Cck® |F | : kK . , ,
= C,# Sd'. ! Sd'x"A(x’)A“(x") exp 4, ke jX=x"")-x - ;‘—_t X' = X" - tAD)

wid Qo(f -2)* . f- 0 2
N . )

3y where Cc = b°c/8x. From Eq. (2.5) and the definition b> = 8x/cD;, one obtains
R
o g2 : (4% P2

‘ flex.2)d = |F1? | S A = (F (A3)

-
REN,

The centroid of /-(x.:) is defined by Eq. (4.7)

- .‘w‘ ;: :
Ko’ >

Xc). = j le(x.2) xdz.r/s Ieix,2) d*x

2 r )
) 3 . k2 . s
jd'x'jd'x"A(x')A'(x”) exp ‘ g (X' - = x'") (Ada)
RV

i k

'L-— jexp e K ix—xx dix (Adb)
& )" f -2 ]
4
' Performing the integration over x. which gives &x’ — x'’), then integrating by parts over x'. one
50 finally obtains

-

Pl e I
i

- ]
i ¥y, 2. - -
ixcl, = SQ,- lA(x) %! L= vodbix) + =x |, (AS)
D} k f

I

which reduces to (4.6a) for : < <f. The second spatial moment is defined by

2, Xc Xcl, = f Iex.2nxxdx/ Sflc(x.:)"dzx (A6a)

N .s o .
b = dix’ dix A(X)A*(X'') ex ———'k: (X = )
"Z:',: [210— )D,J Jate' P [2f(f—:) ‘

- -

(X' =XV x| dx (A6b)

I Y
V-2 W T, . | tk

;‘ X | p J v v . Sexp f - [T

o) - - ’

Following steps similar to those used on (A4), one obtains expression (4.6b) for : < < /.
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Figure 5 — Standard deviation of the ablation pressure nonuniformities {Eq. (3.24)] vs. dimensionless parameter
AKdNs = (2xd /a)Ns (assuming no temporal averaging) for values of the fixed parameter AKd < < | (solid
line), AKd = 0.5 (squares), and AKd = 1.0 (stars). The dashed line is the asymptotic result

a, — 2V2;AKdN; [Expression (3.25b)], which becomes exact in the limit where AKd < < | and AKdNg > > |.
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by Egs. (4.11)], which are used to calculate perturbations of the time-averaged ISI profile due to laser beam
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8Y A MONOCHROMATIC LASER.
INTERFERENCE PATTERN IS “FROZEN IN.”

Figure 9 — Numerical simuiation of the quadrature configuration (using reflecting echelons with Vg =20 1nd
D, = 1 cm) illuminated by narrowband 527 nm light. The resulting stationary interference pattern i1s partially
filtered out of the ablation pressure. but the lower spatial frequencies remain. giving a 37% peak valley
deviation from the ensemble-averaged profile p(x).
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